试题
题目:
如图,在平面直角坐标系,点A、B分别是x轴正半轴、y轴正半轴上的动点,∠OAB的内角平分线与∠OBA的外角平分线所在直线交于点C,则∠ACB的度数为
45
45
.
答案
45
解:∵BC是∠OBA的外角平分线,
∴∠1+∠2=∠AOB+∠3+∠4,即∠1+∠2=90°+∠3+∠4,
∠1=∠2;
又∵AC是∠OAB的内角平分线,
∴∠3=∠4;
∴∠1=45°+∠3,
∴∠1-∠3=45°;
在△ACB中,
∠ACB=180°-∠3-∠2-∠5,
又∠1+∠2+∠5=180°,
∴∠ACB=∠1+∠2+∠5-∠3-∠2-∠5=∠1-∠3=45°,即∠ACB=45°;
故答案为:45°.
考点梳理
考点
分析
点评
专题
三角形的外角性质;坐标与图形性质.
根据三角形外角的性质知,∠1+∠2=90°+∠3+∠4;又由外角平分线与内角平分线的性质,得∠1=∠2,∠3=∠4;再根据平角的性质知∠1+∠2+∠5=180°;最后在△ACB中,根据三角形的内角和定理来求∠ACB的度数.
本题主要考查了三角形的外角的性质及坐标与图形的性质.解答的关键是沟通外角和内角的关系.
计算题.
找相似题
(2012·南昌模拟)等腰三角形ABC在直角坐标系中,底边的两端点坐标分别是(-3,m),(5,m),则能确定的是它的( )
在直角坐标系中顺次连结(2,3),(-2,3),(-4,-2),(4,-2)所成的四边形是( )
已知点P(-1,3),过点P向y轴作垂线,垂足是M,则点M的坐标为( )
如图,已知:△ABC为直角三角形,∠B=90°,AB垂直x轴,M为AC中点.若A点坐标为(3,4),M点坐标为(-1,1),则B点坐标为( )
平面直角坐标系的坐标原点是O(0,0),在x轴上有一点A(
3
,0),以OA为一边作面积为
3
2
的△OAB,使点B在y轴上,那么点B的坐标是( )