试题

题目:
在平面直角坐标系中,△ABC的顶点A(4,0),B(0,4),点C在x轴的负半轴,且∠BCO=30°,BC=8,画出符合条件的图形,并求出点C的坐标及△ABC的面积S和周长C.
答案
青果学院解:符合条件的图如下所示:
根据分析,设C点坐标是(a,0),则BC=
(a-0)2+(0-4)2
=8,解得:a1=4
3
(不合题意,舍去),a2=-4
3

即C点的坐标为:(-4
3
,0),
∴S=
1
2
×OB×OC+
1
2
×OA×OB=
1
2
×4×4
3
+
1
2
×4×4=8
3
+8,
∴C=BC+AC+AB=8+4
3
+4+4
2
=12+4
3
+4
2

青果学院解:符合条件的图如下所示:
根据分析,设C点坐标是(a,0),则BC=
(a-0)2+(0-4)2
=8,解得:a1=4
3
(不合题意,舍去),a2=-4
3

即C点的坐标为:(-4
3
,0),
∴S=
1
2
×OB×OC+
1
2
×OA×OB=
1
2
×4×4
3
+
1
2
×4×4=8
3
+8,
∴C=BC+AC+AB=8+4
3
+4+4
2
=12+4
3
+4
2
考点梳理
坐标与图形性质.
先设C点坐标是(a,0),利用两点之间的距离公式可求BC,而BC=2×4=8,联合可求出符合条件的C点坐标(a<0),然后利用三角形面积公式可求面积及周长=OB+BC+OC.
本题利用了两点之间距离公式,以及直角三角形中30°的角所对的直角边等于斜边的一半,考查了三角形面积公式,周长的计算等.
找相似题