试题
题目:
如图,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=
53
53
度.
答案
53
解:∵∠BOE与∠AOF是对顶角,
∴∠BOE=∠AOF,
∵∠1=95°,∠2=32°,∠COD是平角,
∴∠AOF=180°-∠1-∠2=180°-95°-32°=53°,
即∠BOE=53°.
考点梳理
考点
分析
点评
专题
对顶角、邻补角.
由∠BOE与∠AOF是对顶角,可得∠BOE=∠AOF,又因为∠COD是平角,可得∠1+∠2+∠AOF=180°,将∠1=95°,∠2=32°代入,即可求得∠AOF的度数,即∠BOE的度数.
本题主要考查对顶角和平角的概念及性质,是需要记忆的内容.
计算题.
找相似题
(2009·辽阳)如图,∠CBD、∠ADE为△ABD的两个外角,∠CBD=70°,∠ADE=149°,则∠A的度数是( )
(2009·辽宁)如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是( )
(2009·辽宁)如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOD的度数是( )
(2011·石家庄模拟)如图,直线AB与直线CD相交于点O,OE平分∠AOD,已知∠BOD=30°,则∠AOE的度数是( )
如图,直线AB与CD相交于点O,OE是射线,则∠AOC的对顶角是( )