试题
题目:
如图,已知DM平分∠ADC,BM平分∠ABC,∠A=36°,∠M=44°,求∠C的度数.
答案
解:∵DM平分∠CDA,
∴∠CDM=∠MDA,
又∵BM平分∠ABC,
∴∠CBM=∠ABM,
又∵∠MDA+44°=∠CBM+36°,
∴∠CBM-∠MDA=8°,
∴2∠CBM-2∠MDA=16°,
即∠ABC-∠ADC=16°,
又∵∠ADC+∠C=∠ABC+∠A,
∴∠C=36°+16°=52°.
解:∵DM平分∠CDA,
∴∠CDM=∠MDA,
又∵BM平分∠ABC,
∴∠CBM=∠ABM,
又∵∠MDA+44°=∠CBM+36°,
∴∠CBM-∠MDA=8°,
∴2∠CBM-2∠MDA=16°,
即∠ABC-∠ADC=16°,
又∵∠ADC+∠C=∠ABC+∠A,
∴∠C=36°+16°=52°.
考点梳理
考点
分析
点评
三角形内角和定理;角平分线的定义.
根据角平分线的定义可得∠CDM=∠MDA,∠CBM=∠ABM,然后利用三角形的内角和求出∠CBM-∠MDA=8°,再求出∠ABC-∠ADC=16°,再次利用三角形的内角和定理列式求解即可得到∠C.
本题考查了三角形的内角和定理,角平分线的定义,熟记定理并根据“8字形”列出等式是解题的关键.
找相似题
(2006·沈阳)在△ABC中,I是内心,∠BIC=130°,则∠A的度数是( )
(2006·临沂)已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+
1
2
∠A;
(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;
(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-
1
2
∠A.
上述说法正确的个数是( )
(2013·柳州二模)若∠AOB=90°,∠BOC=40°,则∠AOB的平分线与∠BOC的平分线的夹角等于( )
下列说法正确的是( )
如图,∠AOB=120°,OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠B0C的角平分线,下列叙述正确的是( )