试题
题目:
(2006·沈阳)在△ABC中,I是内心,∠BIC=130°,则∠A的度数是( )
A.40°
B.50°
C.65°
D.80°
答案
D
解:∵∠BIC=130°,
∴∠IBC+∠ICB=50°,
又∵I是内心即I是三角形三个内角平分线的交点,
∴∠ABC+∠ACB=100°,
∴∠A=80°.
故选D.
考点梳理
考点
分析
点评
专题
三角形内角和定理;角平分线的定义.
已知∠BIC=130°,则根据三角形内角和定理可知∠IBC+∠ICB=50°,则得到∠ABC+∠ACB=100度,则本题易解.
正确理解三角形的角平分线的定义,以及三角形的内角和定理是解决的关键.
压轴题.
找相似题
(2006·临沂)已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+
1
2
∠A;
(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;
(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-
1
2
∠A.
上述说法正确的个数是( )
(2013·柳州二模)若∠AOB=90°,∠BOC=40°,则∠AOB的平分线与∠BOC的平分线的夹角等于( )
下列说法正确的是( )
如图,∠AOB=120°,OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠B0C的角平分线,下列叙述正确的是( )
如图,已知∠AOC=α,∠BOC=β,且OD,OE分别为∠AOB,∠BOC的角平分线,则∠DOE的度数为( )(用α,β的代数式表示)