答案
解:在△AEP中,∠BAD=180°-∠APE-∠AEP=180°-55°-100°=25°,
∵AD是高,
∴∠ADB=∠ADC=90°,
∴∠B=180°-∠BAD-∠ADB=65°,
∴∠BCE=∠AEP-∠B=35°.
∵CE是角平分线,
∴∠ACB=2∠BCE=70°,
∴在△ABC中,∠BAC=180°-∠B-∠ACB=45°.
解:在△AEP中,∠BAD=180°-∠APE-∠AEP=180°-55°-100°=25°,
∵AD是高,
∴∠ADB=∠ADC=90°,
∴∠B=180°-∠BAD-∠ADB=65°,
∴∠BCE=∠AEP-∠B=35°.
∵CE是角平分线,
∴∠ACB=2∠BCE=70°,
∴在△ABC中,∠BAC=180°-∠B-∠ACB=45°.