答案

解:∠A+∠ECF=2∠P.
如图,延长EP交AF于G.
则∠EPF=∠PGF+∠PFA,
∵∠PGF=∠A+∠AEP,
∴∠EPF=∠PFA+∠A+∠AEP,
∵∠ECF=∠CDF+∠CFD,∠CDF=∠A+∠AED,
EP平分∠AED,FP平分∠AFB,
∴∠ECF=∠A+∠AED+∠CFD=∠A+2∠AEP+2∠AFP,
∴∠A+∠ECF=2∠A+2∠AEP+2∠AFP=2∠EPF,
即:∠A+∠ECF=2∠P.

解:∠A+∠ECF=2∠P.
如图,延长EP交AF于G.
则∠EPF=∠PGF+∠PFA,
∵∠PGF=∠A+∠AEP,
∴∠EPF=∠PFA+∠A+∠AEP,
∵∠ECF=∠CDF+∠CFD,∠CDF=∠A+∠AED,
EP平分∠AED,FP平分∠AFB,
∴∠ECF=∠A+∠AED+∠CFD=∠A+2∠AEP+2∠AFP,
∴∠A+∠ECF=2∠A+2∠AEP+2∠AFP=2∠EPF,
即:∠A+∠ECF=2∠P.