试题
题目:
如图,已知OM、ON分别平分∠AOC、∠BOC,如果∠MON=55°,求∠AOB的度数.
答案
解:∵OM、ON分别平分∠AOC、∠BOC,
∴∠AOC=2∠COM,∠BOC=2∠CON,
∴∠AOB=∠AOC+∠BOC,
=2(∠COM+∠CON),
=2×55°,
=110°.
解:∵OM、ON分别平分∠AOC、∠BOC,
∴∠AOC=2∠COM,∠BOC=2∠CON,
∴∠AOB=∠AOC+∠BOC,
=2(∠COM+∠CON),
=2×55°,
=110°.
考点梳理
考点
分析
点评
专题
角平分线的定义.
根据角平分线的定义容易得到∴∠AOB=∠AOC+∠BOC=2(∠COM+∠CON)=2∠MON.
本题主要考查角平分线的知识点,不是很难.
计算题.
找相似题
(2006·沈阳)在△ABC中,I是内心,∠BIC=130°,则∠A的度数是( )
(2006·临沂)已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+
1
2
∠A;
(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;
(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-
1
2
∠A.
上述说法正确的个数是( )
(2013·柳州二模)若∠AOB=90°,∠BOC=40°,则∠AOB的平分线与∠BOC的平分线的夹角等于( )
下列说法正确的是( )
如图,∠AOB=120°,OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠B0C的角平分线,下列叙述正确的是( )