试题
题目:
如图,∠AOB=90°,∠AOC=30°,且OM平分∠BOC,ON平分∠AOC,
(1)求∠MON的度数;
(2)若∠AOB=α其他条件不变,求∠MON的度数;
(3)若∠AOC=β(β为锐角)其他条件不变,求∠MON的度数;
(4)从上面结果中看出有什么规律?
答案
解:(1)∵∠AOB=90°,∠AOC=30°,
∴∠BOC=120°
∵OM平分∠BOC,ON平分∠AOC
∴∠COM=60°,∠CON=15°
∴∠MON=∠COM-∠CON=45°.
(2)∵∠AOB=α,∠AOC=30°,
∴∠BOC=α+30°
∵OM平分∠BOC,ON平分∠AOC
∴∠COM=
α
2
+15°,∠CON=15°
∴∠MON=∠COM-∠CON=
α
2
.
(3)∵∠AOB=90°,∠AOC=β,
∴∠BOC=90°+β
∵OM平分∠BOC,ON平分∠AOC
∴∠COM=45°+
β
2
,∠CON=
β
2
.
∴∠MON=∠COM-∠CON=45°.
(4)从上面的结果中,发现:
∠MON的大小只和∠AOB得大小有关,与∠A0C的大小无关.
解:(1)∵∠AOB=90°,∠AOC=30°,
∴∠BOC=120°
∵OM平分∠BOC,ON平分∠AOC
∴∠COM=60°,∠CON=15°
∴∠MON=∠COM-∠CON=45°.
(2)∵∠AOB=α,∠AOC=30°,
∴∠BOC=α+30°
∵OM平分∠BOC,ON平分∠AOC
∴∠COM=
α
2
+15°,∠CON=15°
∴∠MON=∠COM-∠CON=
α
2
.
(3)∵∠AOB=90°,∠AOC=β,
∴∠BOC=90°+β
∵OM平分∠BOC,ON平分∠AOC
∴∠COM=45°+
β
2
,∠CON=
β
2
.
∴∠MON=∠COM-∠CON=45°.
(4)从上面的结果中,发现:
∠MON的大小只和∠AOB得大小有关,与∠A0C的大小无关.
考点梳理
考点
分析
点评
专题
角平分线的定义.
(1)要求∠MON,即求∠COM-∠CON,再根据角平分线的概念分别进行计算即可求得;
(2)和(3)均根据(1)的计算方法进行推导即可.
(4)根据(2)和(3)中的结论进行总结.
能够结合图形表示角之间的和差关系,根据角平分线的概念运用几何式子表示角之间的倍分关系.
规律型.
找相似题
(2006·沈阳)在△ABC中,I是内心,∠BIC=130°,则∠A的度数是( )
(2006·临沂)已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+
1
2
∠A;
(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;
(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-
1
2
∠A.
上述说法正确的个数是( )
(2013·柳州二模)若∠AOB=90°,∠BOC=40°,则∠AOB的平分线与∠BOC的平分线的夹角等于( )
下列说法正确的是( )
如图,∠AOB=120°,OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠B0C的角平分线,下列叙述正确的是( )