试题
题目:
如图,在△ABC中,∠ACB=90°,∠B=60°,CD,CE分别是△ABC的高和角平分线,求∠DCE和∠AEC的度数.
答案
解:∵CE是△ABC的角平分线,
∴∠ACE=∠BCE=45°,
在△ABC中,∠B=60°,
∴∠BCD=30°,
∴∠DCE=∠ECB-∠DCB=45-30=15°,
∠AEC=∠BCE+∠B=105°.
解:∵CE是△ABC的角平分线,
∴∠ACE=∠BCE=45°,
在△ABC中,∠B=60°,
∴∠BCD=30°,
∴∠DCE=∠ECB-∠DCB=45-30=15°,
∠AEC=∠BCE+∠B=105°.
考点梳理
考点
分析
点评
三角形的外角性质;角平分线的定义;三角形内角和定理.
根据角平分线的定义可以求得∠ECB的度数,在直角△BCD中,即可求得∠BCD的度数,根据∠DCE=∠ECB-∠DCB即可求解;根据三角形的外角等于不相邻两内角的和即可求得∠AEC的度数.
本题考查的是三角形的内角和定理,以及角平分线的定义.
找相似题
(2006·沈阳)在△ABC中,I是内心,∠BIC=130°,则∠A的度数是( )
(2006·临沂)已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+
1
2
∠A;
(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;
(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-
1
2
∠A.
上述说法正确的个数是( )
(2013·柳州二模)若∠AOB=90°,∠BOC=40°,则∠AOB的平分线与∠BOC的平分线的夹角等于( )
下列说法正确的是( )
如图,∠AOB=120°,OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠B0C的角平分线,下列叙述正确的是( )