试题
题目:
如图,在△ABC中,∠BAC=30°,∠C=70°,AF平分∠BAC,BF平分∠CBE,AF交BC于D,求∠BDA的度数和∠F的度数.
答案
解:∵AF平分∠BAC,∠BAC=30°,
∴∠CAD=
1
2
∠CAB=15°,
∴∠BDA=∠C+∠CAD=85°.
∵∠CBE=∠C+∠BAC=100°,
又∵BF平分∠CBE,
∴∠CBF=
1
2
∠CBE=50°,
∵∠ABC=180°-∠BAC-∠C=80°,
∴∠F=∠ABC-∠CBF=30°.
解:∵AF平分∠BAC,∠BAC=30°,
∴∠CAD=
1
2
∠CAB=15°,
∴∠BDA=∠C+∠CAD=85°.
∵∠CBE=∠C+∠BAC=100°,
又∵BF平分∠CBE,
∴∠CBF=
1
2
∠CBE=50°,
∵∠ABC=180°-∠BAC-∠C=80°,
∴∠F=∠ABC-∠CBF=30°.
考点梳理
考点
分析
点评
三角形的外角性质;角平分线的定义.
运用角平分线的定义可得∠CAD=
1
2
∠CAB=15°,再由三角形外角的性质可得∠BDA的度数;再求出∠CBF的度数,利用△BDF的外角∠BDA可求得∠F的度数.
本题考查三角形外角的性质及角平分线的性质,解答的关键是沟通外角和内角的关系.
找相似题
(2006·沈阳)在△ABC中,I是内心,∠BIC=130°,则∠A的度数是( )
(2006·临沂)已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+
1
2
∠A;
(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;
(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-
1
2
∠A.
上述说法正确的个数是( )
(2013·柳州二模)若∠AOB=90°,∠BOC=40°,则∠AOB的平分线与∠BOC的平分线的夹角等于( )
下列说法正确的是( )
如图,∠AOB=120°,OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠B0C的角平分线,下列叙述正确的是( )