试题
题目:
如图所示,△ABC中,BD,CD分别平分∠ABC和外角∠ACE,若∠D﹦24°,则∠A﹦
48
48
度.
答案
48
解:∵∠A=∠ACE-∠ABC=2∠DCE-2∠DBC=2(∠DCE-∠DBC),∠D=∠DCE-∠DBC,
∴∠A=2∠D=48°.
考点梳理
考点
分析
点评
三角形的外角性质;角平分线的定义;三角形内角和定理.
根据角平分线的定义和三角形的外角的性质求解.
主要考查了三角形的外角等于与它不相邻的两个内角和.
找相似题
(2006·沈阳)在△ABC中,I是内心,∠BIC=130°,则∠A的度数是( )
(2006·临沂)已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+
1
2
∠A;
(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;
(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-
1
2
∠A.
上述说法正确的个数是( )
(2013·柳州二模)若∠AOB=90°,∠BOC=40°,则∠AOB的平分线与∠BOC的平分线的夹角等于( )
下列说法正确的是( )
如图,∠AOB=120°,OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠B0C的角平分线,下列叙述正确的是( )