试题
题目:
如图,△ABC的两外角平分线相交于点D,∠A=50°,则∠D=
65°
65°
.
答案
65°
解:根据三角形的内角和定理、角平分线定义以及三角形的外角的性质,得
∠D=180°-(∠1+∠2)
=180°-
1
2
(∠CBE+∠BCF)
=180°-
1
2
(180°-∠ABC+180°-∠BCA)
=180°-
1
2
(180°+∠A)
=90°-
1
2
∠A
=65°.
考点梳理
考点
分析
点评
三角形内角和定理;角平分线的定义.
根据三角形的内角和定理,得∠D=180°-(∠1+∠2),结合角平分线定义,
得∠1+∠2=
1
2
(∠CBE+∠BCF),再根据平角的定义得出∠CBE+∠BCF=180°-∠ABC+180°-∠BCA,就可找到∠D和∠A的关系,从而求解.
熟记此题的结论便于快速地解决一些填空题或选择题.
三角形的两外角平分线相交所成的锐角等于90°减去不相邻的第三个内角的一半.
找相似题
(2006·沈阳)在△ABC中,I是内心,∠BIC=130°,则∠A的度数是( )
(2006·临沂)已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+
1
2
∠A;
(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;
(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-
1
2
∠A.
上述说法正确的个数是( )
(2013·柳州二模)若∠AOB=90°,∠BOC=40°,则∠AOB的平分线与∠BOC的平分线的夹角等于( )
下列说法正确的是( )
如图,∠AOB=120°,OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠B0C的角平分线,下列叙述正确的是( )