试题
题目:
如图,O为直线AB上一点,OE、OF分别是∠AOC、∠BOC的平分线,则∠EOF的度数是( )
A.60°
B.80°
C.90°
D.100°
答案
C
解:∵OE、OF分别是∠AOC、∠BOC的平分线,
∴∠AOE=∠COE,∠COF=∠BOF,
∵∠AOC+∠COB=∠AOE+∠COE+∠COF+∠FOB=180°,
∴2(∠COE+∠COF)=180°,即∠COE+∠COF=90°,
则∠EOF=∠COE+∠COF=90°.
故选C.
考点梳理
考点
分析
点评
专题
角平分线的定义.
由OE与OF为角平分线,利用角平分线定义得到两对角相等,由平角的定义及等式的性质即可求出所求角的度数.
此题考查了角平分线定义,熟练掌握角平分线定义是解本题的关键.
计算题.
找相似题
(2006·沈阳)在△ABC中,I是内心,∠BIC=130°,则∠A的度数是( )
(2006·临沂)已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+
1
2
∠A;
(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;
(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-
1
2
∠A.
上述说法正确的个数是( )
(2013·柳州二模)若∠AOB=90°,∠BOC=40°,则∠AOB的平分线与∠BOC的平分线的夹角等于( )
下列说法正确的是( )
如图,∠AOB=120°,OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠B0C的角平分线,下列叙述正确的是( )