试题
题目:
如图,已知∠AOC=α,∠BOC=β,且OD,OE分别为∠AOB,∠BOC的角平分线,则∠DOE的度数为( )(用α,β的代数式表示)
A.
α+β
2
B.
α-β
2
C.
α
2
D.
β
2
答案
C
解:如图,∵∠AOC=α,∠BOC=β,且OD,OE分别为∠AOB,∠BOC的角平分线,
∴∠BOD=
1
2
∠AOB=
1
2
(α+β),∠EOB=
1
2
∠BOC=
1
2
β,
∴∠DOE=∠DOB-∠EOB=
1
2
(α+β)-
1
2
β=
1
2
α.
故选C.
考点梳理
考点
分析
点评
角平分线的定义.
利用角平分线线的定义求得∠BOD=
1
2
∠AOB=
1
2
(α+β),同理知∠EOB=
1
2
∠BOC=
1
2
β,易求∠DOE=∠BOD-∠EOB.
本题考查了角平分线线的定义.解题时,注意结合图形求得角与角间的和差关系:∠DOE=∠BOD-∠EOB.
找相似题
(2006·沈阳)在△ABC中,I是内心,∠BIC=130°,则∠A的度数是( )
(2006·临沂)已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+
1
2
∠A;
(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;
(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-
1
2
∠A.
上述说法正确的个数是( )
(2013·柳州二模)若∠AOB=90°,∠BOC=40°,则∠AOB的平分线与∠BOC的平分线的夹角等于( )
下列说法正确的是( )
如图,∠AOB=120°,OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠B0C的角平分线,下列叙述正确的是( )