试题
题目:
(2011·湖州三模)2010年4月14日上午7时49分,青海省藏族自治州玉树县发生里氏7.1级地震.某省地震救援队立即赶赴震区进行救援.救援队利用生命探测仪在某建筑物废墟下方探测出点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距3米,探测线与地面的夹角分别是30°和60°(如图),试确定生命所在点C的深度.(结果精确到0.1米,参考数据:
2
≈1.41,
3
≈1.73)
答案
解:如图,过点C作CD⊥AB交AB于点D.(1分)
∵探测线与地面的夹角为30°和60°
∴∠CAD=30°,∠CBD=60°(2分)
在Rt△BDC中,
tan60°=
CD
BD
∴
BD=
CD
tan60°
=
CD
3
(3分)
在Rt△ADC中,
tan30°=
CD
AD
∴
AD=
CD
tan30°
=
3CD
3
(4分)
∵AB=AD-BD=3
∴
3CD
3
-
CD
3
=3
(5分)
∴
CD=
3
3
2
=
3×1.73
2
≈2.6(米)
.(6分)
答:生命所在点C的深度大约为2.6米.(7分)
解:如图,过点C作CD⊥AB交AB于点D.(1分)
∵探测线与地面的夹角为30°和60°
∴∠CAD=30°,∠CBD=60°(2分)
在Rt△BDC中,
tan60°=
CD
BD
∴
BD=
CD
tan60°
=
CD
3
(3分)
在Rt△ADC中,
tan30°=
CD
AD
∴
AD=
CD
tan30°
=
3CD
3
(4分)
∵AB=AD-BD=3
∴
3CD
3
-
CD
3
=3
(5分)
∴
CD=
3
3
2
=
3×1.73
2
≈2.6(米)
.(6分)
答:生命所在点C的深度大约为2.6米.(7分)
考点梳理
考点
分析
点评
解直角三角形的应用.
过C作AB的垂线CD,分别用CD表示出AD、BD的值,然后根据AB的长度,列方程求得CD的长,即生命所在点C的深度.
本题通过作合理的延长线,形成直角三角形,利用三角函数求得未知量.
找相似题
(2012·舟山)如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于( )米.
(2012·襄阳)在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD.如图,已知小明距假山的水平距离BD为12m,他的眼镜距地面的高度为1.6m,李明的视线经过量角器零刻度线OA和假山的最高点C,此时,铅垂线OE经过量角器的60°刻度线,则假山的高度为( )
(2011·孝感)如图,某航天飞机在地球表面点P的正上方A处,从A处观测到地球上的最远点Q,若∠QAP=α,地球半径为R,则航天飞机距地球表面的最近距离AP,以及P、Q两点间的地面距离分别是( )
(2009·营口)一架5米长的梯子斜靠在墙上,测得它与地面的夹角为40°,则梯子底端到墙角的距离为( )
(2008·枣庄)如图,两个高度相等且底面直径之比为1:2的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P的距离是( )