试题
题目:
(2011·金平区二模)某校把一块沿河的三角形废地(如图)开辟为生物园,已知∠ACB=90°,∠CAB=60°,AB=24米.为便于浇灌,学校在点C处建了一个蓄水池,利用管道从河中取水.已知每铺设1米管道费用为50元,求铺设管道的最低费用(精确到1元).(
3
≈1.73)
答案
解:作CD⊥AB于D,
由∠ACB=90°,∠CAB=60°,得∠ABC=30°,
又AB=24,得AC=
1
2
AB=12米.(2分)
在Rt△CDA中,
sin∠CAD=
CD
AC
,
∴CD=AC·sin∠CAD=12×
3
2
=6
3
米.
∴铺设管道的最低费用=50·CD≈519(元).
解:作CD⊥AB于D,
由∠ACB=90°,∠CAB=60°,得∠ABC=30°,
又AB=24,得AC=
1
2
AB=12米.(2分)
在Rt△CDA中,
sin∠CAD=
CD
AC
,
∴CD=AC·sin∠CAD=12×
3
2
=6
3
米.
∴铺设管道的最低费用=50·CD≈519(元).
考点梳理
考点
分析
点评
专题
解直角三角形的应用.
作高CD,在直角△ABC中可以求出AC,再在Rt△CDA中根据三角函数就可以求出CD的长.
此题主要题考查了解直角三角形,三角函数的性质,解题关键是把实际问题转化成数学问题.
应用题.
找相似题
(2012·舟山)如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于( )米.
(2012·襄阳)在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD.如图,已知小明距假山的水平距离BD为12m,他的眼镜距地面的高度为1.6m,李明的视线经过量角器零刻度线OA和假山的最高点C,此时,铅垂线OE经过量角器的60°刻度线,则假山的高度为( )
(2011·孝感)如图,某航天飞机在地球表面点P的正上方A处,从A处观测到地球上的最远点Q,若∠QAP=α,地球半径为R,则航天飞机距地球表面的最近距离AP,以及P、Q两点间的地面距离分别是( )
(2009·营口)一架5米长的梯子斜靠在墙上,测得它与地面的夹角为40°,则梯子底端到墙角的距离为( )
(2008·枣庄)如图,两个高度相等且底面直径之比为1:2的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P的距离是( )