试题
题目:
(2012·双柏县一模)小明用一个有30°角的直角三角板估测他们学校的旗杆AB的高度.他将30°角的直角边水平放在1.5米高的支架CD上,三角板的斜边与旗杆的顶点在同一直线上,他又量得DB的距离为10米.试求旗杆AB的高度(精确到0.1米)
答案
解:∵EC=10米,CD=1.5米,∠ACE=30°,
在Rt△AEC中,tan∠ACE=
AE
EC
=
AE
10
,
∴AE=tan30°×10≈5.77,
∴AB=AE+EB=5.77+1.5=7.27≈7.3(米).
答:旗杆AB的高度为7.3米.
解:∵EC=10米,CD=1.5米,∠ACE=30°,
在Rt△AEC中,tan∠ACE=
AE
EC
=
AE
10
,
∴AE=tan30°×10≈5.77,
∴AB=AE+EB=5.77+1.5=7.27≈7.3(米).
答:旗杆AB的高度为7.3米.
考点梳理
考点
分析
点评
专题
解直角三角形的应用.
本题的关键是求出AE的高度,已知BD的长度也就是EC的长度,可根据∠ACE=30°,在RT△ACE中,用EC的长和∠ACE的正切值求出AE的长,然后根据旗杆的高度AB=AE+BE即可得出旗杆的长.
本题主要考查了解直角三角形的应用,要根据所求和已知的条件正确的选用合适的三角形函数进行求解,难度一般.
应用题.
找相似题
(2012·舟山)如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于( )米.
(2012·襄阳)在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD.如图,已知小明距假山的水平距离BD为12m,他的眼镜距地面的高度为1.6m,李明的视线经过量角器零刻度线OA和假山的最高点C,此时,铅垂线OE经过量角器的60°刻度线,则假山的高度为( )
(2011·孝感)如图,某航天飞机在地球表面点P的正上方A处,从A处观测到地球上的最远点Q,若∠QAP=α,地球半径为R,则航天飞机距地球表面的最近距离AP,以及P、Q两点间的地面距离分别是( )
(2009·营口)一架5米长的梯子斜靠在墙上,测得它与地面的夹角为40°,则梯子底端到墙角的距离为( )
(2008·枣庄)如图,两个高度相等且底面直径之比为1:2的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P的距离是( )