试题
题目:
(2013·溧水县二模)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线A→D→C→B到达,现在新建了桥EF,可直接沿直线AB从A地到达B地.已知BC=16km,∠A=53°,∠B=30°.桥DC和AB平行,则现在从A地到达B地可比原来少走多少路程?
(结果精确到0.1km.参考数据:
3
≌1.73
,sin53°≈0.80,cos53°≈0.60)
答案
解:作DG⊥AB于G,CH⊥AB于H
,
则四边形CDGH为矩形,
∴GH=CD,
在Rt△BCH中,
∵sin∠B=
CH
CB
,BC=16km,∠B=30°,
∴CH=8,
cos∠B=
BH
CB
,
∴BH=8
3
,
易得DG=CH=8,
在△ADG中,
∵sin∠A=
DG
AD
,DG=8,
∴AD=10,AG=6,
∴(AD+DC+CB)-(AG+GH+HB)=20-8
3
≈6.2(km).
答:现在从A地到达B地可比原来少走6.2km.
解:作DG⊥AB于G,CH⊥AB于H
,
则四边形CDGH为矩形,
∴GH=CD,
在Rt△BCH中,
∵sin∠B=
CH
CB
,BC=16km,∠B=30°,
∴CH=8,
cos∠B=
BH
CB
,
∴BH=8
3
,
易得DG=CH=8,
在△ADG中,
∵sin∠A=
DG
AD
,DG=8,
∴AD=10,AG=6,
∴(AD+DC+CB)-(AG+GH+HB)=20-8
3
≈6.2(km).
答:现在从A地到达B地可比原来少走6.2km.
考点梳理
考点
分析
点评
解直角三角形的应用.
作DG⊥AB于G,CH⊥AB于H,分别在Rt△ADG和Rt△BCE中,分别求出AG、BH的长度,然后求出(AD+DC+CB)-(AG+GH+HB)即可.
本题考查了解直角三角形的应用,解答本题的关键是根据所给的角的度数构造直角三角形,然后解直角三角形,难度一般.
找相似题
(2012·舟山)如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于( )米.
(2012·襄阳)在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD.如图,已知小明距假山的水平距离BD为12m,他的眼镜距地面的高度为1.6m,李明的视线经过量角器零刻度线OA和假山的最高点C,此时,铅垂线OE经过量角器的60°刻度线,则假山的高度为( )
(2011·孝感)如图,某航天飞机在地球表面点P的正上方A处,从A处观测到地球上的最远点Q,若∠QAP=α,地球半径为R,则航天飞机距地球表面的最近距离AP,以及P、Q两点间的地面距离分别是( )
(2009·营口)一架5米长的梯子斜靠在墙上,测得它与地面的夹角为40°,则梯子底端到墙角的距离为( )
(2008·枣庄)如图,两个高度相等且底面直径之比为1:2的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P的距离是( )