试题
题目:
如图是某厂家新开发的一款摩托车,它的大灯射出的光线AB、AC与地面MN的夹角分别为8°和10°,该大灯照亮地面的宽度BC的长为1.4米,求该大灯距地面的高度.(参考数据:sin8°≈
4
25
,tan8°≈
1
7
,sin10°≈
9
50
,tan10°≈
5
28
)
答案
解:过点A作AD⊥MN于点D,在Rt△ADB与Rt△ACD中,由锐角三角函数的定义可知,
AD
(CD+BC)
=tan∠ABD,
AD
(CD+1.4)
=
1
7
①,
AD
CD
=tan∠ACD,
AD
CD
=
5
28
②,
联立两方程得
AD
CD+1.4
=
1
7
AD
CD
=
5
28
,
解得AD=1.
答:该大灯距地面的高度1米.
解:过点A作AD⊥MN于点D,在Rt△ADB与Rt△ACD中,由锐角三角函数的定义可知,
AD
(CD+BC)
=tan∠ABD,
AD
(CD+1.4)
=
1
7
①,
AD
CD
=tan∠ACD,
AD
CD
=
5
28
②,
联立两方程得
AD
CD+1.4
=
1
7
AD
CD
=
5
28
,
解得AD=1.
答:该大灯距地面的高度1米.
考点梳理
考点
分析
点评
专题
解直角三角形的应用.
过点A作AD⊥MN于点D,在Rt△ADB与Rt△ACD中,由锐角三角函数的定义可知,
AD
(CD+BC)
=tan∠ABD,
AD
(CD+1.4)
=
1
7
①,
AD
CD
=tan∠ACD,
AD
CD
=
5
28
②,联立两方程即可求出AD的长.
本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数的定义求解是解答此题的关键.
探究型.
找相似题
(2012·舟山)如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于( )米.
(2012·襄阳)在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD.如图,已知小明距假山的水平距离BD为12m,他的眼镜距地面的高度为1.6m,李明的视线经过量角器零刻度线OA和假山的最高点C,此时,铅垂线OE经过量角器的60°刻度线,则假山的高度为( )
(2011·孝感)如图,某航天飞机在地球表面点P的正上方A处,从A处观测到地球上的最远点Q,若∠QAP=α,地球半径为R,则航天飞机距地球表面的最近距离AP,以及P、Q两点间的地面距离分别是( )
(2009·营口)一架5米长的梯子斜靠在墙上,测得它与地面的夹角为40°,则梯子底端到墙角的距离为( )
(2008·枣庄)如图,两个高度相等且底面直径之比为1:2的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P的距离是( )