试题
题目:
已知,如图,A、B、C三个村庄在一条东西走向的公路沿线上,AB=12千米,在B村的正北方向有一个D村,测得∠DAB=45°,∠DCB=28°,今将△ACD区域进行规划,除其中面积为0.5平方千米的水塘外,准备把剩
余的一半作为绿化用地.
(1)求BC的长.
(2)求绿化地的面积.
(结果精确到0.1,sin28°=0.4695,sin62°=0.8829,tan28°=0.5317,tan62°=1.8808)
答案
解:(1)在Rt△ABD中,
∵∠DAB=45°,
∴∠BDA=45°,
∴DB=AB=12,
在Rt△BCD中,
∵tan∠BDC=
BC
BD
,
∴BC=BDtan∠BDC=12×tan62°=22.6(千米);
(2)S
绿化地
=
1
2
[
1
2
(AC+BD)×12-0.5]
=
1
2
[
1
2
×(22.57+12)×12-0.5]
=103.5(平方千米)
解:(1)在Rt△ABD中,
∵∠DAB=45°,
∴∠BDA=45°,
∴DB=AB=12,
在Rt△BCD中,
∵tan∠BDC=
BC
BD
,
∴BC=BDtan∠BDC=12×tan62°=22.6(千米);
(2)S
绿化地
=
1
2
[
1
2
(AC+BD)×12-0.5]
=
1
2
[
1
2
×(22.57+12)×12-0.5]
=103.5(平方千米)
考点梳理
考点
分析
点评
专题
解直角三角形的应用.
(1)在Rt△ABD中,由∠DAB=45°,可得出∠BDA=45°,故DB=AB=12,在Rt△BCD中利用锐角三角函数的定义即可求出BC的长;
(2)根据S
绿化地
=S
△ACD
-S
池塘
1
2
[
1
2
(AC+BD)×12-0.5]即可得出结论.
本题考查的是解直角三角形的应用,涉及到锐角三角函数的定义、等腰直角三角形的判定与性质及三角形的面积公式,涉及面较广,难度适中.
压轴题;探究型.
找相似题
(2012·舟山)如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于( )米.
(2012·襄阳)在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD.如图,已知小明距假山的水平距离BD为12m,他的眼镜距地面的高度为1.6m,李明的视线经过量角器零刻度线OA和假山的最高点C,此时,铅垂线OE经过量角器的60°刻度线,则假山的高度为( )
(2011·孝感)如图,某航天飞机在地球表面点P的正上方A处,从A处观测到地球上的最远点Q,若∠QAP=α,地球半径为R,则航天飞机距地球表面的最近距离AP,以及P、Q两点间的地面距离分别是( )
(2009·营口)一架5米长的梯子斜靠在墙上,测得它与地面的夹角为40°,则梯子底端到墙角的距离为( )
(2008·枣庄)如图,两个高度相等且底面直径之比为1:2的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P的距离是( )