试题
题目:
(2009·宝山区一模)如图,一条细绳系着一个小球在平面内摆动、已知细绳的长度为20厘米,当小球摆动到最高位置时,细绳偏转的角度为28°,那么小球在最高位置与最低位置时的高度差为
20(1-cos28°)
20(1-cos28°)
厘米(用所给数据表示即可).
答案
20(1-cos28°)
解:如图:过A作AB⊥OC于B.
Rt△OAB中,OA=20厘米,∠AOB=28°,
∴OB=OA·cos28°=20×cos28°.
∴BC=OC-OB=20-20×cos28°=20(1-cos28°).
考点梳理
考点
分析
点评
解直角三角形的应用.
当小球在最高位置时,过小球作小球位置最低时细绳的垂线,在构建的直角三角形中,可根据偏转角的度数和细绳的长度,求出小球最低位置时的铅直高度,进而可求出小球在最高位置与最低位置时的高度差.
此题考查了三角函数的基本概念,主要是余弦概念及运算,关键把实际问题转化为数学问题加以计算.
找相似题
(2012·舟山)如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于( )米.
(2012·襄阳)在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD.如图,已知小明距假山的水平距离BD为12m,他的眼镜距地面的高度为1.6m,李明的视线经过量角器零刻度线OA和假山的最高点C,此时,铅垂线OE经过量角器的60°刻度线,则假山的高度为( )
(2011·孝感)如图,某航天飞机在地球表面点P的正上方A处,从A处观测到地球上的最远点Q,若∠QAP=α,地球半径为R,则航天飞机距地球表面的最近距离AP,以及P、Q两点间的地面距离分别是( )
(2009·营口)一架5米长的梯子斜靠在墙上,测得它与地面的夹角为40°,则梯子底端到墙角的距离为( )
(2008·枣庄)如图,两个高度相等且底面直径之比为1:2的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P的距离是( )