试题
题目:
(2010·济宁)如图,是一张宽m的矩形台球桌ABCD,一球从点M(点M在长边CD上)出发沿虚线MN射向边BC,然后反弹到边AB上的P点,如果MC=n,∠CMN=α,那么P点与B点的距离为
m-n·tanα
tanα
m-n·tanα
tanα
.
答案
m-n·tanα
tanα
解:由题意知:∠NPB=∠NMC=α.
Rt△MNC中,MC=n,∠NMC=α,
∴NC=MC·tanα=n·tanα,
∴BN=BC-NC=m-n·tanα.
Rt△BPN中,∠BPN=α,
∵tanα=
BN
PB
,
∴PB·tanα=BN,
∴PB=BN÷tanα=
m-n·tanα
tanα
.
故答案为
m-n·tanα
tanα
.
考点梳理
考点
分析
点评
专题
解直角三角形的应用;轴对称的性质.
由于P点沿MN经边BC反弹到AB,那么∠PNB=∠MNC,即∠BPN=α,可在Rt△MNC中,用α和MC的长表示出NC,进而可求出BN的表达式;进一步可在Rt△PBN中,求出PB的长.
此题是跨学科综合题,主要考查的是入射角等于反射角和解直角三角形的应用.
压轴题.
找相似题
(2012·舟山)如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于( )米.
(2012·襄阳)在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD.如图,已知小明距假山的水平距离BD为12m,他的眼镜距地面的高度为1.6m,李明的视线经过量角器零刻度线OA和假山的最高点C,此时,铅垂线OE经过量角器的60°刻度线,则假山的高度为( )
(2011·孝感)如图,某航天飞机在地球表面点P的正上方A处,从A处观测到地球上的最远点Q,若∠QAP=α,地球半径为R,则航天飞机距地球表面的最近距离AP,以及P、Q两点间的地面距离分别是( )
(2009·营口)一架5米长的梯子斜靠在墙上,测得它与地面的夹角为40°,则梯子底端到墙角的距离为( )
(2008·枣庄)如图,两个高度相等且底面直径之比为1:2的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P的距离是( )