试题

题目:
青果学院(2005·台州)如图,我市某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且DB=5m,则BC的长度是多少?现再在C点上方2m处加固另一条钢缆ED,那么钢缆ED的长度为多少?(结果保留三个有效数字)
答案
解:在Rt△BCD中,∵BD=5,
∵tan40°=
BC
BD

∴BC=5tan40°=4.1955≈4.20.
在Rt△BCD中,BE=BC+CE=6.20,
∴DE=
BE2+DB2

=
38.44+25
=
63.44

≈7.96
答:BC的长度约为4.20m,钢缆ED的长度约7.96m.
解:在Rt△BCD中,∵BD=5,
∵tan40°=
BC
BD

∴BC=5tan40°=4.1955≈4.20.
在Rt△BCD中,BE=BC+CE=6.20,
∴DE=
BE2+DB2

=
38.44+25
=
63.44

≈7.96
答:BC的长度约为4.20m,钢缆ED的长度约7.96m.
考点梳理
解直角三角形的应用-坡度坡角问题.
要先求BE的长,就要求BC的长,而在Rt△CDB的中,已知一边和一个锐角,满足解直角三角形的条件,可求出BC的长,再由勾股定理求得ED的长.
这两个直角三角形有公共的直角边,先利用公共边的解决此类题目的基本出发点.
应用题.
找相似题