试题

题目:
青果学院如图,点B是⊙O的半径OA的中点,且CD⊥OA于B,则tan∠CPD的值为
3
3

答案
3

解:连OC、OD,如图,青果学院
∵CD⊥OA,
∴∠OBC=90°,弧AC=弧AD,
∴∠COA=∠DOA,
而点B是⊙O的半径OA的中点,
在Rt△OBC,OB=
1
2
OC,
∴∠OCB=30°,∠COA=60°,
∴∠COD=2×60°=120°,
∴∠CPD=
1
2
∠COD=60°,
∴tan∠CPD=
3

故答案为
3
考点梳理
圆周角定理;垂径定理;锐角三角函数的定义.
由CD⊥OA于B,根据垂径定理得到弧AC=弧AD,则∠COA=∠DOA,而点B是⊙O的半径OA的中点,在Rt△OBC,OB=
1
2
OC,根据含30度的直角三角形三边的关系得到∠OCB=30°,∠COA=60°,则∠COD=2×60°=120°,再根据圆周角定理有∠CPD=
1
2
∠COD=60°,然后根据特殊角的三角函数值求解即可.
本题考查了圆周角定理:在同圆或等圆中,一条弧所对的圆周角的度数等于它所对的圆心角度数的一半.也考查了垂径定理以及特殊角的三角函数值.
计算题.
找相似题