试题
题目:
(2013·济南)已知直线l
1
∥l
2
∥l
3
∥l
4
,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )
A.
2
3
B.
3
4
C.
4
3
D.
3
2
答案
C
解:如图,过点C作CE⊥l
4
于点E,延长EC交l
1
于点F.
在矩形ABCD中,∠BCD=90°,
∵∠α+∠BCE=90°,∠BCE+∠DCF=180°-90°=90°,
∴∠α=∠DCF,
又∵∠BEC=∠CFD=90°,
∴△BEC∽△CFD,
∴
BE
CF
=
BC
CD
,即
BE
h
=
6
4
,
∴BE=
3
2
h.
在Rt△BCE中,∵∠BEC=90°,
∴tanα=
CE
BE
=
2h
3
2
h
=
4
3
.
故选C.
考点梳理
考点
分析
点评
相似三角形的判定与性质;平行线之间的距离;矩形的性质;锐角三角函数的定义.
过点C作CE⊥l
4
于点E,延长EC交l
1
于点F,根据同角的余角相等求出∠α=∠DCF,利用两角对应相等的两三角形相似证明△BEC∽△CFD,再由相似三角形对应边成比例可得BE=
3
2
h,然后在Rt△BCE中利用锐角的正切值等于对边比邻边列式计算即可得解.
本题考查了相似三角形的判定与性质,矩形的性质,锐角三角形函数的定义,作辅助线,构造出相似三角形以及∠α所在的直角三角形是解题的关键.
找相似题
(2013·昭通)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
(2013·温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是( )
(2013·天水)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于( )
(2013·平凉)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是( )
(2013·鄂州)如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD:CD=3:2,则tanB=( )