试题
题目:
如图所示,以锐角△ABC的边AB为直径作⊙O,交AC,BC于E、D两点,若AC=14,CD=4,7sinC=3tanB,则BD=
6
6
.
答案
6
解:连接AD,则AD⊥BC.
在Rt△ADC中,sinC=
AD
AC
;
在Rt△ABD中,tanB=
AD
BD
.
∵7sinC=3tanB,
∴
sinC
tanB
=
3
7
.
即:
AD
AC
×
BD
AD
=
3
7
,
∴
BD
AC
=
3
7
.
∵AC=14,
∴BD=6.
考点梳理
考点
分析
点评
专题
圆周角定理;锐角三角函数的定义.
连接AD,分别在Rt△ACD和Rt△ABD中,表示出sinC和tanB的值,根据它们的比例关系,即可求得BD、AC的关系式,进而代值计算即可.
此题主要考查的是圆周角定理和锐角三角函数的定义,以AD为介质来得到AC、BD的比例关系,是解决问题的关键.
压轴题.
找相似题
(2013·昭通)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
(2013·温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是( )
(2013·天水)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于( )
(2013·平凉)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是( )
(2013·济南)已知直线l
1
∥l
2
∥l
3
∥l
4
,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )