试题
题目:
如图,已知两点A(2,0),B(0,4),且sin∠1=cos∠2,则点C的坐标为
(0,1)
(0,1)
.
答案
(0,1)
解:∵A(2,0),B(0,4),
∴AB=
2
2
+
4
2
=2
5
,
∴sin∠1=cos∠2=
4
2
5
=
2
5
5
,
∴在Rt△OAC中,AC=
2
2
5
5
=
5
,
∴OC=1.
∴点C的坐标是(0,1).
故答案为:(0,1).
考点梳理
考点
分析
点评
勾股定理;坐标与图形性质;锐角三角函数的定义.
根据已知条件,由勾股定理得到AB的长,从而求出cos∠2的值,即sin∠1的值,在Rt△OAC中,运用三角函数的知识求得AC,再由勾股定理得到OC的长,从而求解.
本题考查了勾股定理,锐角三角函数的定义和坐标与图形性质.求点的坐标的问题可以转化为求线段的长度的问题.
找相似题
(2013·昭通)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
(2013·温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是( )
(2013·天水)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于( )
(2013·平凉)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是( )
(2013·济南)已知直线l
1
∥l
2
∥l
3
∥l
4
,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )