试题

题目:
青果学院(2010·黄浦区一模)如图,平面直角坐标系中一点A,已知OA=
5
,其中O为坐标原点,OA与x轴正半轴所成角α的正切值为2,则点A的坐标为
(1,2)
(1,2)

答案
(1,2)

青果学院解:过A作AB⊥x轴于点B.
∵OA与x轴正半轴所成角α的正切值为2,
∴tanα=
AB
OB
=2,
假设AB=2x,则BO=x,
OA=
5

∴4x2+x2=5,
5x2=5,
∴x=1,
∴AB=2,BO=1,
∴点A的坐标为:(1,2).
故答案为:(1,2).
考点梳理
锐角三角函数的定义;坐标与图形性质;勾股定理.
首先根据OA与x轴正半轴所成角α的正切值为2,得出tanα=
AB
OB
=2,即可得出AB,BO的长度关系,结合AO的长,再利用勾股定理求出即可.
此题主要考查了勾股定理的应用以及锐角三角函数的定义,根据已知得出AB与BO的长度关系进而利用勾股定理求出是解决问题的关键.
找相似题