试题
题目:
(2013·黄浦区一模)如图,E是正方形ABCD边CD的中点,AE与BD交于点O,则tan∠AOB=
3
3
.
答案
3
解:连接AC交BD于F,设正方形的边长为2,
∵E是正方形ABCD边CD的中点,
∴则DE=1,
∴AE=
2
2
+
1
2
=
5
,
∵四边形ABCD是正方形,
∴DE∥AB,AC⊥BD于F,
∴△EOD∽△AOB,
∴DE:AB=EO:AO=1:2,
∴AO=
2
5
3
,
∵AC=
2
2
+
2
2
=2
2
,
∴AF=
1
2
×2
2
=
2
,
∴OF=
A
O
2
-A
F
2
=
2
3
,
∴tan∠AOB=
AF
OF
=
2
2
3
=3,
故答案为:3.
考点梳理
考点
分析
点评
相似三角形的判定与性质;勾股定理;正方形的性质;锐角三角函数的定义.
连接AC交BD于F,设正方形的边长为2,则DE=1,由正方形的性质可知:DE∥AB,所以△EOD∽△AOB,根据勾股定理可求出AE和BD的长,由相似三角形的性质可得AO和OE的比值,进而求出AO,根据正方形的对角线互相平分可求出AF,进而求出tan∠AOB的值.
本题考查了正方形的性质、勾股定理的运用、相似三角形的判定和性质以及锐角三角函数的定义,题目的综合性很强,难度中等.
找相似题
(2013·昭通)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
(2013·温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是( )
(2013·天水)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于( )
(2013·平凉)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是( )
(2013·济南)已知直线l
1
∥l
2
∥l
3
∥l
4
,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )