试题
题目:
(2005·南昌)如图为长方形时钟钟面示意图,时钟的中心在长方形对角线的交点上,长方形的宽为20厘米,钟面数字2在长方形的顶点处,则长方形的长为
20
3
20
3
厘米.
答案
20
3
解:设长方形长的一半为x.
∵tan30°=
10
x
=
3
3
,
∴x=
10
3
,
∴长方形长为20
3
cm.
考点梳理
考点
分析
点评
专题
矩形的性质;锐角三角函数的定义.
依题意可知该三角形为直角三角形,其中有一锐角为30°,又知其中一直角边是10,再利用锐角三角函数的正切值解决问题.
本题主要是和生活实际相联系,注意观察得到相应的结论.
应用题;压轴题.
找相似题
(2013·昭通)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
(2013·温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是( )
(2013·天水)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于( )
(2013·平凉)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是( )
(2013·济南)已知直线l
1
∥l
2
∥l
3
∥l
4
,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )