试题
题目:
(2008·孝感)四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正方形面积为1,大正方形面积为25,直角三角形中较小的锐角为β,那么sinβ=
3
5
3
5
.
答案
3
5
解:由题意知,小正方形的边长为1,大正方形的边长为5.
设直角三角形中较小的边的边长为x,
则有(1+x)
2
+x
2
=25.
解得x=3(负值不合题意,舍去)
∴sinβ=
3
5
.
考点梳理
考点
分析
点评
专题
勾股定理;锐角三角函数的定义.
已知正方形的面积即可求出边长.根据勾股定理求出直角三角形的边长,即可求解.
此题考查了三角函数的定义和勾股定理.
压轴题.
找相似题
(2013·昭通)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
(2013·温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是( )
(2013·天水)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于( )
(2013·平凉)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是( )
(2013·济南)已知直线l
1
∥l
2
∥l
3
∥l
4
,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )