试题
题目:
(2009·包头)如图,已知△ACB与△DFE是两个全等的直角三角形,量得它们的斜边长为10cm,较小锐角为30°,将这两个三角形摆成如图1所示的形状,使点B、C、F、D在同一条直线上,且点C与点F重合,将图1中的△ACB绕点C顺时针
方向旋转到图2的位置,点E在AB边上,AC交DE于点G,则线段FG的长为
5
3
2
5
3
2
cm(保留根号).
答案
5
3
2
解:由题意知,在Rt△ABC中,
∠A=30°,∠B=60°,
由旋转的性质知图(2)中,CB=CE,
∴△BCE为等边三角形.
∴∠ECB=60°,∠ECG=30°.
而∠FED=60°.
∴∠EGC=90°.
在Rt△DEF中,CE=EF=DE·sin∠D=10×sin30°=5,(或:根据30°的角所对的直角边是斜边的一半)
在Rt△CEG中,FG=CE·sin∠CEG=5×sin60°=
5
3
2
.
考点梳理
考点
分析
点评
专题
旋转的性质;等边三角形的判定;锐角三角函数的定义.
△ACB与△DFE是两个全等的直角三角形,已知斜边DE=10,∠D=30°,可求CE;利用旋转60°可求∠ECG=30°,∠CEG=60°,从而可证∠CGE=90°.解直角△CEG即可.
本题考查旋转性质和三角函数定义:在直角三角形中,正弦等于对比斜;余弦等于邻比斜;正切等于对比邻.
压轴题.
找相似题
(2013·昭通)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
(2013·温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是( )
(2013·天水)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于( )
(2013·平凉)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是( )
(2013·济南)已知直线l
1
∥l
2
∥l
3
∥l
4
,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )