试题

题目:
青果学院如图,Rt△ABC中,∠ACB=90°,∠A=30°,D为AB的延长线上一点,且AB:BD=4:1,则tan∠BDC=
3
2
3
2

答案
3
2

青果学院解:过C作CE⊥AD,交AD于点E,可得∠CEB=90°,
∵Rt△ABC中,∠ACB=90°,∠A=30°,
∴∠ABC=60°,BC=
1
2
AB,
由AB:BD=4:1,设BD=x,AB=4x,则AD=BD+AB=5x,BC=2x,
在Rt△CEB中,∠ECB=30°,
可得EB=
1
2
BC=x,即ED=EB+BD=x+x=2x,
根据勾股定理得:EC=
BC2-EB2
=
3
x,
在Rt△CED中,tan∠BDC=
EC
ED
=
3
x
2x
=
3
2

故答案为:
3
2
考点梳理
勾股定理;含30度角的直角三角形;锐角三角函数的定义.
过C作CE⊥AD,交AD于点E,可得∠CEB=90°,在直角三角形ABC中,利用30度角所对的直角边等于斜边的一半,得到BC为AB的一半,由AB:BD=4:1,设BD=x,AB=4x,则AD=BD+AB=5x,BC=2x,在直角三角形CEB中,再利用30度角所对的直角边等于斜边的一半表示出EB,由EB+BD表示出ED,在直角三角形CED中,利用锐角三角函数定义即可求出tan∠BDC的值.
此题考查了勾股定理,含30度直角三角形的性质,以及锐角三角函数定义,熟练掌握勾股定理是解本题的关键.
计算题.
找相似题