切线的性质;切割线定理;相似三角形的判定与性质;锐角三角函数的定义.
(1)由于FC2=FE·FD,因此只要证PF2=FE·FD即可,可以通过证三角形PEF和DPF相似来解.证这两个三角形相似关键是求∠DPF=∠PEF,可通过等角的补角相等来证,∠DEP是圆内接四边形ADEB的外角,∠DEP=∠A,而∠A是∠DPF的补角(平行线间的同旁内角),∠DEP是∠PEF的补角,由此可得证.
(2)证法同(1).
(3)求PF,关键是求PC的长,也就是求出PE,BE的长.连接AE,那么可在直角三角形APE中,根据∠APE的正切值和勾股定理可以求出AE,PE的长,然后用AE的长,在直角三角形ABE中根据∠B的正切值求出BE的长,那么根据切割线定理得出的PC2=PE·PB,可求出PC的长,也就求出了PF的长.
本题主要考查了切割线定理,相似三角形的性质以及解直角三角形等知识点,通过线段的比例关系来求解是本题的基本思路.
压轴题;探究型.