试题
题目:
已知α,β是△ABC的两个角,且sinα,tanβ是方程2x
2
-3x+1=0的两根,则△ABC是( )
A.锐角三角形
B.直角三角形或钝角三角形
C.钝角三角形
D.等边三角形
答案
B
解:由2x
2
-3x+1=0得:(2x-1)(x-1)=0,∴x=
1
2
或x=1.
∴sinα>0,tanβ>0
若sinα=
1
2
,tanβ=1,则α=30°,β=45°,γ=180°-30°-45°=105°,
∴△ABC为钝角三角形.
若sinα=1,tanβ=
1
2
,则α=90°,β<90°,△ABC为直角三角形.
故选B.
考点梳理
考点
分析
点评
锐角三角函数的定义;解一元二次方程-因式分解法.
先解出方程的两根,讨论sinα,tanβ的值.∵在三角形中,角的范围是(0,180°),∴sinα必大于0,此时只要考虑tanβ的值即可,若tanβ>0,则β为锐角;tanβ小于0,则β为钝角.再把x的两个值分别代入sinα,tanβ中,可求出α,β的值,从而判断△ABC的形状.
本题易在α,β上的取值出错,学生常常解出方程的两根后不知道如何判断,因此在解答时我们可对x的值分类讨论,从而判断出△ABC的形状.
找相似题
(2013·昭通)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
(2013·温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是( )
(2013·天水)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于( )
(2013·平凉)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是( )
(2013·济南)已知直线l
1
∥l
2
∥l
3
∥l
4
,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )