试题
题目:
BC、AC为半径为1的⊙O的弦,D为BC上动点,M、N分别为AD、BD的中点,则sin∠ACB的值可表示为( )
A.DN
B.DM
C.MN
D.CD
答案
C
解:连接AB,连接AO并延长交圆于E点,连接BE,
∴AE为直径,∠ABE=90°,∠AEB=∠ACB.
∴sin∠ACB=sin∠AEB=
AB
AE
=
2MN
2
=MN.
故选C.
考点梳理
考点
分析
点评
专题
锐角三角函数的定义;垂径定理;圆周角定理.
连接AB,连接AO并延长交圆于E点,连接BE,则AE为直径,∠AEB=∠ACB.求得sin∠ACB,即得出sin∠AEB,从而得出答案.
本题考查了锐角三角函数的定义、垂径定理以及圆周角定理是基础知识要熟练掌握.
计算题.
找相似题
(2013·昭通)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
(2013·温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是( )
(2013·天水)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于( )
(2013·平凉)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是( )
(2013·济南)已知直线l
1
∥l
2
∥l
3
∥l
4
,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )