试题
题目:
如图,AB为⊙O的直径,过点B作⊙O的切线BC,若tan∠BCO=
1
2
,则tan∠ACO=( )
A.
2
2
B.
1
3
C.
2
4
D.
1
4
答案
B
解:如图,过点O作OE⊥AC于点E.
∵AB为⊙O的直径,⊙O的切线是BC,
∴∠ABC=90°.
又∵tan∠BCO=
1
2
,
∴
OB
BC
=
1
2
,
∴OB=
1
2
BC,则AB=BC.即△ABC是等腰直角三角形,
∴AC=2
2
AO,∠A=45°,OE=AE=
2
2
AO,
∴tan∠ACO=
OE
CE
=
2
2
AO
2
2
AO-
2
2
AO
=
1
3
.
故选B.
考点梳理
考点
分析
点评
专题
切线的性质;等腰直角三角形;锐角三角函数的定义.
如图,过点E作OE⊥AC于点E.在Rt△OEC中运用三角函数的定义求解.
本题综合考查了切线的性质、等腰直角三角形以及锐角三角函数的定义.证得△ABC是等腰直角三角形是此题的难点.
压轴题.
找相似题
(2013·昭通)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
(2013·温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是( )
(2013·天水)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于( )
(2013·平凉)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是( )
(2013·济南)已知直线l
1
∥l
2
∥l
3
∥l
4
,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )