试题

题目:
青果学院如图,△ABC内接于⊙O,其外角平分线AD交⊙O于DM⊥AC于M,下列结论:
①DB=DC;②AC-AB=2AM;③AC+AB=2CM;④DH=AD·sin∠A=
12
5
k
,2AH=
AD2-DH2
=
16
5
k

其中正确的有(  )



答案
B
青果学院解:过点D作DF⊥BE,
∵A、B、C、D四点共圆,
∴∠FAD=∠BCD,
∵外角平分线AD交⊙O于D,
∴∠FAD=∠DAC,
又∵∠DBC=∠DAC,
∴∠BCD=∠CBD,
∴①DB=DC,故此选项正确;
∵AD外角平分线,DF⊥BE,DM⊥AC于M,
∴DF=DM,
又∵∠DFA=∠DMC=90°,∠ABD=∠ACD,
∴Rt△BFD≌Rt△CMD,
∴BF=CM,
又∵AF=AM,
∴②AC-AB=CM+AM-AB=CM+AM-CM+AF=CM+AM-CM+AM=2AM,故此选项正确;
∴③AC+AB=AM+MC+BF-FA=AM+MC+MC-AM=2CM,故此选项正确;
无法证明④是正确的.
故选B.
考点梳理
三角形的外接圆与外心;勾股定理;圆周角定理;相似三角形的判定与性质;锐角三角函数的定义.
由A、B、C、D四点共圆,可得∠FAD=∠BCD,由同弧所对的圆周角相等得到圆周角相等,结合外角平分线可得∠BCD=∠CBD,可得BD=CD;过点D作DF⊥BE,可以通过证明三角形全等,通过边的关系可以得到②AC-AB=2AM,③AC+AB=2CM都是正确的;而没有理由证明④是正确的.
本题考查了圆周角、三角形的外角的性质及全等三角形的判定与性质;作出辅助线,利用三角形全等是正确解答本题的关键.
找相似题