试题
题目:
(2004·奉贤区二模)已知:如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于F、F.
(1)求证:四边形AFCE是菱形;
(2)如果BF比AE长2,BE=5,求sin∠FBE的值.
答案
解:(1)∵EF是对角线AC的垂直平分线,
∴OA=OC,AC⊥EF,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠EAO=∠FCO,
∵∠AOE=∠COF,
∴在△AOE和△COF中,
∠EAO=∠FCO
AO=CO
∠AOE=∠COF
∴△AOE≌△COF(ASA).
∴OE=OF.
∴四边形AFCE是平行四边形,
又∵AC⊥EF,
∴四边形是AFCE菱形.(1分)
(2)连接AE交BF于O点
BF-AE=2
(
BF
2
)
2
+(
AE
2
)
2
=25
,(2分)
∴
BF=8
AE=6
.(1分)
在Rt△BOE中,sin∠FBE=
OE
BE
=
3
5
.(2分)
解:(1)∵EF是对角线AC的垂直平分线,
∴OA=OC,AC⊥EF,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠EAO=∠FCO,
∵∠AOE=∠COF,
∴在△AOE和△COF中,
∠EAO=∠FCO
AO=CO
∠AOE=∠COF
∴△AOE≌△COF(ASA).
∴OE=OF.
∴四边形AFCE是平行四边形,
又∵AC⊥EF,
∴四边形是AFCE菱形.(1分)
(2)连接AE交BF于O点
BF-AE=2
(
BF
2
)
2
+(
AE
2
)
2
=25
,(2分)
∴
BF=8
AE=6
.(1分)
在Rt△BOE中,sin∠FBE=
OE
BE
=
3
5
.(2分)
考点梳理
考点
分析
点评
专题
菱形的判定;勾股定理;平行四边形的性质;锐角三角函数的定义.
(1)根据EF是对角线AC的垂直平分线,可以求证△AOE≌△COF,证明四边形的对角线互相平分,垂直,就可以证出.
(2)在直角△OFC中根据勾股定理就可以求出.
本题主要考查了菱形的证明方法,以及平行四边形的性质,中心对称性.
计算题;证明题.
找相似题
(2013·昭通)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
(2013·温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是( )
(2013·天水)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于( )
(2013·平凉)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是( )
(2013·济南)已知直线l
1
∥l
2
∥l
3
∥l
4
,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )