题目:

(2009·静安区三模)如图,在△ABC中,AB=6,BC=4,点D在边BC的延长线上,∠ADC=∠BAC,点E在边BA的延长线上,∠E=∠DAC.
(1)找出图中的相似三角形,并证明;
(2)设AC=x,DE=y,求y关于x的函数解析式,并写出定义域;
(3)△AED能否与△ABC相似?如果能够,请求出cosB的值;如果不能,请说明理由.
答案
解:(1)△ABC∽△DBA,△CAD∽△AED.(2分)
证明如下:∵∠B=∠B,∠ADC=∠BAC,
∴△ABC∽△DBA;
∵∠BAC+∠DAC=∠BAD=∠ADE+∠E,∠DAC=∠E,
∴∠BAC=∠ADE=∠ADC,
∴△CAD∽△AED;
(2)∵△ABC∽△DBA,
∴
==,
∴DA=
==,
∴BD=
==9.
∴CD=5.
∵△CAD∽△AED,
∴
=.
∴DE·CD=DA
2,
∴
5y=(x)2,
∴函数解析式为y=
x2,定义域为2<x<10;
(3)△AED能与△ABC相似.
∵∠BAC=∠ADE=∠ADC,∠BCA>∠ADC=∠ADE,∠BCA>∠CAD=∠E,
∴只有∠B=∠E=∠DAC时,△AED与△ABC相似.(1分)
这时,由于∠B+∠BAC+∠CAD+∠ADC=180°,
∴∠BAC+∠DAC=90°,
∴∠ACB=∠BAD=90°,
∴cosB=
==.
解:(1)△ABC∽△DBA,△CAD∽△AED.(2分)
证明如下:∵∠B=∠B,∠ADC=∠BAC,
∴△ABC∽△DBA;
∵∠BAC+∠DAC=∠BAD=∠ADE+∠E,∠DAC=∠E,
∴∠BAC=∠ADE=∠ADC,
∴△CAD∽△AED;
(2)∵△ABC∽△DBA,
∴
==,
∴DA=
==,
∴BD=
==9.
∴CD=5.
∵△CAD∽△AED,
∴
=.
∴DE·CD=DA
2,
∴
5y=(x)2,
∴函数解析式为y=
x2,定义域为2<x<10;
(3)△AED能与△ABC相似.
∵∠BAC=∠ADE=∠ADC,∠BCA>∠ADC=∠ADE,∠BCA>∠CAD=∠E,
∴只有∠B=∠E=∠DAC时,△AED与△ABC相似.(1分)
这时,由于∠B+∠BAC+∠CAD+∠ADC=180°,
∴∠BAC+∠DAC=90°,
∴∠ACB=∠BAD=90°,
∴cosB=
==.