试题
题目:
(2010·崇文区二模)如图,在梯形ABCD中,AB∥CD,BD⊥AD,BC=CD,∠A=60°,CD=2cm.
(1)求cos∠CBD的值;
(2)求梯形ABCD的面积.
答案
解:(1)∵∠A=60°,BD⊥AD,
∴∠ABD=30°
又∵AB∥CD,
∴∠CDB=∠ABD=30°
∵BC=CD,
∴∠CBD=∠CDB=30°
∴cos∠CBD=
3
2
;
(2)过D作DE⊥AB于点E
∵∠ABD=∠CBD=30°,
∴∠ABC=60°=∠A
∴AD=BC=CD=2cm
在Rt△ABD中,AB=2AD=4cm,
DE=AD·sin60°=
3
,
∴S
ABCD
=
1
2
(AB+CD)DE
=
1
2
(4+2)×
3
=
3
3
.
解:(1)∵∠A=60°,BD⊥AD,
∴∠ABD=30°
又∵AB∥CD,
∴∠CDB=∠ABD=30°
∵BC=CD,
∴∠CBD=∠CDB=30°
∴cos∠CBD=
3
2
;
(2)过D作DE⊥AB于点E
∵∠ABD=∠CBD=30°,
∴∠ABC=60°=∠A
∴AD=BC=CD=2cm
在Rt△ABD中,AB=2AD=4cm,
DE=AD·sin60°=
3
,
∴S
ABCD
=
1
2
(AB+CD)DE
=
1
2
(4+2)×
3
=
3
3
.
考点梳理
考点
分析
点评
梯形;锐角三角函数的定义.
(1)根据直角三角形两锐角互余求出∠ABD,再根据两直线平行,内错角相等和等边对等角的性质即可得到∠DBC的度数是30°;
(2)先判定等腰梯形,分别求出AD、BC、AB的长度,再根据∠A的正弦值求出DE的长度,代入面积公式即可求出.
(1)主要利用直角三角形两锐角互余和等边对等角的性质;
(2)根据角的度数判定梯形是等腰梯形求出两腰长,作辅助线DE,利用∠A的正弦求出梯形的高是求面积的关键.
找相似题
(2013·昭通)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
(2013·温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是( )
(2013·天水)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于( )
(2013·平凉)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是( )
(2013·济南)已知直线l
1
∥l
2
∥l
3
∥l
4
,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )