试题
题目:
已知:如图,AB是⊙O的直径,BC是弦,OD⊥BC于点F,交⊙O于点D,连接AD、CD,∠E=∠ADC.
(1)求证:BE是⊙O的切线;
(2)若BC=6,tanA=
2
3
,求⊙O的半径.
答案
(1)证明:∵OD⊥BC
∴∠E+∠FBE=90°,
∵∠ADC=∠ABC,∠ADC=∠E,
∴∠ABC=∠E,
∴∠ABC+∠FBE=90°,
∴BE与⊙O相切;
(2)解:连接BD,
∵半径OD⊥BC,
∴弧BD=弧CD,
∴∠BCD=∠CBD,
∵∠A=∠BCD,
∴∠CBD=∠A,
∴tanA=tan∠CBD=
2
3
,
∵FC=BF=3,
∴DF=2,
在Rt△CFD中:设半径OB=x,OF=x-2,
∴x
2
=3
2
+(x-2)
2
,
解得:x=
13
4
,
∴⊙O的半径为
13
4
.
(1)证明:∵OD⊥BC
∴∠E+∠FBE=90°,
∵∠ADC=∠ABC,∠ADC=∠E,
∴∠ABC=∠E,
∴∠ABC+∠FBE=90°,
∴BE与⊙O相切;
(2)解:连接BD,
∵半径OD⊥BC,
∴弧BD=弧CD,
∴∠BCD=∠CBD,
∵∠A=∠BCD,
∴∠CBD=∠A,
∴tanA=tan∠CBD=
2
3
,
∵FC=BF=3,
∴DF=2,
在Rt△CFD中:设半径OB=x,OF=x-2,
∴x
2
=3
2
+(x-2)
2
,
解得:x=
13
4
,
∴⊙O的半径为
13
4
.
考点梳理
考点
分析
点评
专题
切线的判定;勾股定理;垂径定理;圆周角定理;锐角三角函数的定义.
(1)要证明BE是⊙O的切线,即可转化为证明∠ABE=90°即可;
(2)连接BD,有垂径定理和圆周角定理可求出DF的长,设OB=x,则OF=x-DF,再利用勾股定理即可求出x的值,即⊙O的半径.
本题考查了切线的判定定理、圆周角定理、垂径定理、勾股定理以及三角函数的综合应用,题目综合性很强,难度一般.
方程思想.
找相似题
(2013·昭通)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
(2013·温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是( )
(2013·天水)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于( )
(2013·平凉)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是( )
(2013·济南)已知直线l
1
∥l
2
∥l
3
∥l
4
,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )