试题
题目:
如图,延长RT△ABC斜边AB到点D,使BD=AB,连接CD,若tan∠BCD=
1
3
,则tanA=( )
A.
3
2
B.1
C.
1
3
D.
2
3
答案
A
解:过B作BE∥AC交CD于E.
∵AC⊥BC,
∴BE⊥BC,∠CBE=90°.
∴BE∥AC.
∵AB=BD,
∴AC=2BE.
又∵tan∠BCD=
1
3
,设BE=x,则AC=2x,
∴tanA=
BC
AC
=
3x
2x
=
3
2
,
故选A.
考点梳理
考点
分析
点评
专题
锐角三角函数的定义;三角形中位线定理.
若想利用tan∠BCD的值,应把∠BCD放在直角三角形中,也就得到了Rt△ACD的中位线,可分别得到所求的角的正切值相关的线段的比.
本题涉及到三角形的中位线定理,锐角三角函数的定义,解答此题关键是作出辅助线构造直角三角形,再进行计算.
计算题.
找相似题
(2013·昭通)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
(2013·温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是( )
(2013·天水)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于( )
(2013·平凉)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是( )
(2013·济南)已知直线l
1
∥l
2
∥l
3
∥l
4
,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )