试题

题目:
青果学院如图,在△ABC中,AD是中线,且AD⊥AB,∠BAC=135°,求sinB.
答案
解:过D作DE平行AC交AB于E,
∵AD⊥AB,
∴∠BAD=90°,
∵∠BAC=135°,
∴∠DAC=45°,
∴∠ADE=∠AED=45°,
∴AE=AD,青果学院
∵AD是中线,
∴BD=CD,
∵DE∥AC,BE=AD,
∵BE=AE,
∴AE=AD=BE,
设AD是x,则AB是2x,由勾股定理得BD=
5
x,
∴sinB=
AD
BD
=
x
5x
=
5
5

解:过D作DE平行AC交AB于E,
∵AD⊥AB,
∴∠BAD=90°,
∵∠BAC=135°,
∴∠DAC=45°,
∴∠ADE=∠AED=45°,
∴AE=AD,青果学院
∵AD是中线,
∴BD=CD,
∵DE∥AC,BE=AD,
∵BE=AE,
∴AE=AD=BE,
设AD是x,则AB是2x,由勾股定理得BD=
5
x,
∴sinB=
AD
BD
=
x
5x
=
5
5
考点梳理
三角形中位线定理;等腰直角三角形;锐角三角函数的定义.
过D作DE平行AC交AB于E,利用已知条件可证明AE=AD=BE,设AD是x,则AB是2x,利用勾股定理,可得BD=
5
x,进而求出sinB的值.
本题考查了平行线的性质,三角形中位线的性质以及勾股定理的运用和锐角三角函数的运用,解题的关键是过已知中点作第三边的平行线得到中位线.
找相似题