试题
题目:
如图,在△ABC中,AD是中线,且AD⊥AB,∠BAC=135°,求sinB.
答案
解:过D作DE平行AC交AB于E,
∵AD⊥AB,
∴∠BAD=90°,
∵∠BAC=135°,
∴∠DAC=45°,
∴∠ADE=∠AED=45°,
∴AE=AD,
∵AD是中线,
∴BD=CD,
∵DE∥AC,BE=AD,
∵BE=AE,
∴AE=AD=BE,
设AD是x,则AB是2x,由勾股定理得BD=
5
x,
∴sinB=
AD
BD
=
x
5x
=
5
5
.
解:过D作DE平行AC交AB于E,
∵AD⊥AB,
∴∠BAD=90°,
∵∠BAC=135°,
∴∠DAC=45°,
∴∠ADE=∠AED=45°,
∴AE=AD,
∵AD是中线,
∴BD=CD,
∵DE∥AC,BE=AD,
∵BE=AE,
∴AE=AD=BE,
设AD是x,则AB是2x,由勾股定理得BD=
5
x,
∴sinB=
AD
BD
=
x
5x
=
5
5
.
考点梳理
考点
分析
点评
三角形中位线定理;等腰直角三角形;锐角三角函数的定义.
过D作DE平行AC交AB于E,利用已知条件可证明AE=AD=BE,设AD是x,则AB是2x,利用勾股定理,可得BD=
5
x,进而求出sinB的值.
本题考查了平行线的性质,三角形中位线的性质以及勾股定理的运用和锐角三角函数的运用,解题的关键是过已知中点作第三边的平行线得到中位线.
找相似题
(2013·昭通)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
(2013·温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是( )
(2013·天水)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于( )
(2013·平凉)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是( )
(2013·济南)已知直线l
1
∥l
2
∥l
3
∥l
4
,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )