答案
(1)证明:在正方形ABCD中,CD=CB,∠DCE+∠BCE=∠BCD=90°,
∵EC⊥CF,
∴∠BCF+∠BCE=90°,
∴∠BCF=∠DCE,
在△BCF和△DCE中,
,

∴△BCF≌△DCE(ASA),
∴EC=FC;
(2)解:如图,连接EF,∵EC⊥CF,EC=FC,
∴△ECF是等腰直角三角形,
∴∠CEF=45°,
∵∠BEC=135°,
∴∠BEF=∠BEC-∠CEF=135°-45°=90°,
∵BE:CE=1:2,
∴设BE=k,CE=2k,
则EF=
CE=2
k,
在Rt△BEF中,tan∠FBE=
=
=2
.
(1)证明:在正方形ABCD中,CD=CB,∠DCE+∠BCE=∠BCD=90°,
∵EC⊥CF,
∴∠BCF+∠BCE=90°,
∴∠BCF=∠DCE,
在△BCF和△DCE中,
,

∴△BCF≌△DCE(ASA),
∴EC=FC;
(2)解:如图,连接EF,∵EC⊥CF,EC=FC,
∴△ECF是等腰直角三角形,
∴∠CEF=45°,
∵∠BEC=135°,
∴∠BEF=∠BEC-∠CEF=135°-45°=90°,
∵BE:CE=1:2,
∴设BE=k,CE=2k,
则EF=
CE=2
k,
在Rt△BEF中,tan∠FBE=
=
=2
.