相似三角形的判定与性质;等腰三角形的性质;圆周角定理;切线的性质;锐角三角函数的定义.
(1)连接BD,由圆周角定理知BD⊥AF,根据等腰三角形三线合一的性质即可证得D是AC的中点.
(2)若CD=CF=4,那么AD=4,易证得△ABD∽△AFB,根据所得比例相等即可求得AB的长.
(3)由圆周角定理知∠CAE=∠ABD,因此sin∠F=sin∠ABD=k,可设AB=ak,则AF=a,AD=ak2,进而可表示出AC、FC的值,即可得到CF、AB的比例关系.
此题主要考查了圆周角定理、等腰三角形三线合一的性质以及相似三角形的判定和性质,能够根据圆周角定理发现∠CAE和∠ABD的等量关系是解答(3)题的关键.
计算题;证明题.