题目:

已知:如图,在Rt△ABC中,∠C=90°,sinA=
,AB=10、点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,连接BD,
(1)求AC的长;
(2)当OA为多少时,BD与⊙O相切?并说明理由.
答案
解:(1)BC=AB·sinA=10×
=6,(1分)
∴AC=
=8、(2分)
(2)OA=
(3分)

理由:连接OD,DE、(4分)
如果BD与⊙O相切,则OD⊥BD,∴∠ADO+∠BDC=90°(5分)
∵OA=OD,∴∠A=∠ADO,∴∠A+∠BDC=90°
∵∠C=90°,∴∠BDC+∠DBC=90°,∴∠A=∠DBC
∵∠C=∠C,∴△ABC∽△BDC,(6分)
∴
=
,解得CD=
∴AD=8-
=
(7分)
∵AE是⊙O的直径,∴∠ADE=90°=∠C(8分)
∵∠A=∠A,∴△ADE∽△ACB,∴
=
,解得AE=
(9分)
∴OA=
.(10分)
解:(1)BC=AB·sinA=10×
=6,(1分)
∴AC=
=8、(2分)
(2)OA=
(3分)

理由:连接OD,DE、(4分)
如果BD与⊙O相切,则OD⊥BD,∴∠ADO+∠BDC=90°(5分)
∵OA=OD,∴∠A=∠ADO,∴∠A+∠BDC=90°
∵∠C=90°,∴∠BDC+∠DBC=90°,∴∠A=∠DBC
∵∠C=∠C,∴△ABC∽△BDC,(6分)
∴
=
,解得CD=
∴AD=8-
=
(7分)
∵AE是⊙O的直径,∴∠ADE=90°=∠C(8分)
∵∠A=∠A,∴△ADE∽△ACB,∴
=
,解得AE=
(9分)
∴OA=
.(10分)