圆的认识;平行线的性质;勾股定理;锐角三角函数的定义.
连接AC,交OD于E.先根据直径所对的圆周角是直角得出∠ACB=90°,再由平行线的性质得出∠AEO=∠ACB=90°,∠AOE=∠B,则求cos∠B的值只需求cos∠AOE的值即可.设OE=x,则DE=2-x.由勾股定理,根据AE的长度不变,得出OA2-OE2=AD2-DE2,列出方程22-x2=12-(2-x)2,解方程求出x的值,然后在△OAE中,根据余弦函数的定义求出cos∠AOE的值.
本题考查了圆周角定理,平行线的性质,勾股定理,三角函数的定义,难度适中,正确作出辅助线是解题的关键.