试题
题目:
(2012·郯城县一模)如图,已知直线l
1
∥l
2
∥l
3
∥l
4
,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则cosα=( )
A.
2
5
5
B.
5
5
C.
5
2
D.
1
2
答案
A
解:如图,过点D作DE⊥l
1
于点E并反向延长交l
4
于点F,
在正方形ABCD中,AD=DC,∠ADC=90°,
∵∠α+∠ADE=90°,∠ADE+∠CDF=180°-90°=90°,
∴∠α=∠CDF,
在△ADE和△DCF中,
∠α=∠CDF
∠AED=∠DFC=90°
AD=DC
,
∴△ADE≌△DCF(AAS),
∴DF=AE,
∵相邻两条平行直线间的距离都是1,
∴DE=1,AE=2,
根据勾股定理得,AD=
AE
2
+DE
2
=
2
2
+1
2
=
5
,
所以,cosα=
AE
AD
=
2
5
=
2
5
5
.
故选A.
考点梳理
考点
分析
点评
全等三角形的判定与性质;勾股定理;锐角三角函数的定义.
过点D作DE⊥l
1
于点E并反向延长交l
4
于点F,根据同角的余角相等求出∠α=∠CDF,根据正方形的每条边都相等可得AD=DC,然后利用“AAS”证明△ADE和△DCF全等,根据全等三角形对应边相等可得DF=AE,再利用勾股定理列式求出AD的长度,然后根据锐角的余弦值等于邻边比斜边列式计算即可得解.
本题考查了全等三角形的判定与性质,正方形的性质,锐角三角形函数的定义,作辅助线,构造出全等三角形以及∠α所在的直角三角形是解题的关键.
找相似题
(2013·昭通)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
(2013·温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是( )
(2013·天水)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于( )
(2013·平凉)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是( )
(2013·济南)已知直线l
1
∥l
2
∥l
3
∥l
4
,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )